Construction of hierarchical nanoporous CuCo₂V₂O₈ hollow spheres as a novel electrode material for high-performance asymmetric supercapacitors

Maryam Amiri, Saied Saeed Hosseiny Davarani, Saeid Kamari Kaverlavani, Seyyed Ebrahim Moosavifard, Mojtaba Shamsipur

Abstract

Design of novel and efficient materials is a crucial requirement to develop supercapacitor electrodes for the production of green and renewable energy storage systems. In this study, for the first time, highly porous quaternary $CuCo_2V_2O_8$ hollow spheres are fabricated by a two-step self-templating method. Copper-cobalt-vanadate microspheres are first synthesized via a facile anion-exchange process between the glycerate (in Cu-Co-glycerate) and VO_3^- ions. Afterward, the copper-cobalt-vanadate microspheres are converted into hierarchical $CuCo_2V_2O_8$ hollow spheres through an annealing treatment the air. In virtue of the structural advantages, the as-prepared material revealed outstanding electrochemical properties as a high-performance electrode for supercapacitor (SCs) with a specific capacity of 799.8 C g⁻¹ at 2 A g⁻¹ (222.1 mAh g⁻¹ at 6 mA cm⁻²), remarkable cycle stability (96.5% capacitance retention over 7000 cycles), superior rate capability around 60.65% capacitance retention at 50 A g⁻¹.

Keywords

Nanoporous hollow spheres Ternary transition metal oxides Energy density Asymmetric supercapacitors Cycling stability